Assessing the genetic relatedness of higher ozone sensitivity of modern wheat to its wild and cultivated progenitors/relatives.

نویسندگان

  • D K Biswas
  • H Xu
  • Y G Li
  • M Z Liu
  • Y H Chen
  • J Z Sun
  • G M Jiang
چکیده

Modern wheat (Triticum aestivum L.) is one of the most ozone (O(3))-sensitive crops. However, little is known about its genetic background of O(3) sensitivity, which is fundamental for breeding O(3)-resistant cultivars. Wild and cultivated species of winter wheat including donors of the A, B and D genomes of T. aestivum were exposed to 100 ppb O(3) or charcoal-filtered air in open top chambers for 21 d. Responses to O(3) were assessed by visible O(3) injury, gas exchange, chlorophyll fluorescence, relative growth rate, and biomass accumulation. Ozone significantly decreased light-saturated net photosynthetic rate (-37%) and instantaneous transpiration efficiency (-42%), but increased stomatal conductance (+11%) and intercellular CO(2) concentration (+11%). Elevated O(3) depressed ground fluorescence (-8%), maximum fluorescence (-26%), variable fluorescence (-31%), and maximum photochemical efficiency (-7%). Ozone also decreased relative growth rate and the allometric coefficient, which finally reduced total biomass accumulation (-54%), but to a greater extent in roots (-77%) than in the shoot (-44%). Winter wheat exhibited significant interspecies variation in the impacts of elevated O(3) on photosynthesis and growth. Primitive cultivated wheat demonstrated the highest relative O(3) tolerance followed by modern wheat and wild wheat showed the lowest. Among the genome donors of modern wheat, Aegilops tauschii (DD) behaved as the most O(3)-sensitive followed by T. monococcum (AA) and Triticum turgidum ssp. durum (AABB) appeared to be the most O(3)-tolerant. It was concluded that the higher O(3) sensitivity of modern wheat was attributed to the increased O(3) sensitivity of Aegilops tauschii (DD), but not to Triticum turgidum ssp. durum (AABB) during speciation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Transferability of barley microsatellite markers for assessing genetic relationships of wheat wild relatives of Triticum and Aegilops genera

Comparative genomics has revealed a high degree of collinearity between related species, which allows transferability of interspecies and intergenus   markers. The aim of this study was to examine the transferability of barley microsatellite markers among species of Triticum and Aegilops genus for determination of their genetic relationships. The experiments was carried out in faculty of agricu...

متن کامل

Investigation of Diversity of Different Agronomic and Morphological Traits in Wild Wheat Relatives

Extended Abstract Introduction and Objective: Wild relatives of wheat are one of the most important genetic resources for use in wheat breeding programs. Therefore, identifying wheat wild relatives and Awareness of the diversity in them, also protecting these species is undeniably effective in expanding the richness of the gene pool and the genetic base of new cultivars and can be a good tool ...

متن کامل

The Evaluation of Genomic Relationships and Diversity of Wild and Cultivated Wheats Possessing A Genome in Different Ploidy Levels Using SSR Markers

Genomic relationships and diversity of 37 wild and cultivated wheat (Triticum sp.) possessing A genome include four T. urartu (Au), thirteen wild einkorn (Am), four cultivated einkorn (Am), seven durum wheat (BBAuAu), three T. zhukovskyi (AtAtAmAmGG) and six com...

متن کامل

ارزیابی تحمل به تنش خشکی در جو زراعی و وحشی براساس صفات فیزیولوژیک و شاخص‌های تحمل

Drought stress is one the most limiting factors for crop production worldwide. The wide ecological and environmental dispersion of crop wild relatives, generates a high potential of their adaptive diversity to abiotic stresses such as drought. In this study 21 (including 10 cultivated and 11 wild barley (Hordeumvulgaressp. spontaneum))genotypes were evaluated under three soil water conditions f...

متن کامل

Diversifying Selection on Flavanone 3-Hydroxylase and Isoflavone Synthase Genes in Cultivated Soybean and Its Wild Progenitors

Soybean isoflavone synthase (IFS) and flavanone 3-hydroxylase (F3H) are two key enzymes catalyzing the biosynthesis of isoflavonoids and flavonoids, both of which play diverse roles in stress responses. However, little is known about the evolutionary pattern of these genes in cultivated soybean and its wild progenitors. Herein, we investigated the nucleotide polymorphisms in Isoflavone synthase...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of experimental botany

دوره 59 4  شماره 

صفحات  -

تاریخ انتشار 2008